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EXECUTIVE SUMMARY

Modern phased-array radar systems increasingly require customized transmit patterns, implemented
using only phase shifts, in order to illuminate or suppress interference from specific regions. Multiple
custom patterns may be required at every beam position, requiring either precomputation of a large library
of phase weights or real-time computation. Presented here is a weighted pattern-error formulation that
offers efficient FFT-based calculation of both the objective and its gradient vector and is well suited for
solving with efficient quasi-Newton methods. Although deliberately simple, the objective has several heuristic
parameters for flexibility and can be used to simultaneously customize the mainbeam shape and selectively
suppress the sidelobes. Examples demonstrate the feasibility of 1000+ element 2D array designs, as well as a
characterization of point-nulls that commonly occur in the mainbeam of suboptimal local minima.
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A PARAMETERIZED PATTERN-ERROR OBJECTIVE FOR
LARGE-SCALE PHASE-ONLY ARRAY PATTERN DESIGN

1. Introduction

Traditionally, radar transmitters are run in saturation to maximize sensitivity and power efficiency.
Although research into efficient amplitude-modulated transmitters is accelerating [1–3], in the near term
high-power radar transmitters will continue to offer only phase control. This considerably complicates the
design of custom array patterns for transmit arrays, as all but the most trivial phase-only optimizations
are nonconvex and thus may have large numbers of local optima. In most fielded radar systems only the
uniformly illuminated transmit beam is used, which provides maximum sensitivity but a narrow mainlobe
and relatively poor sidelobes. In modern multifunction/multibeam arrays, however, it is often desirable to
trade sensitivity for a broader mainbeam, or to selectively null directions or sectors of interest, or both. This
may require patterns customized to each beam position, for example to keep a deep null around the horizon
as the main beam is scanned. This in turn requires a highly efficient approach that can be used to precompute
large libraries of coefficients, or to compute on the fly.

The existing approaches to phase-only array design can be roughly divided into heuristic, nonlocal
optimization, and local optimization methods. The first two of these are primarily of interest here in that
they can be used to augment or initialize local minimization. Many heuristic techniques are descended
from a well-known approach to nonlinear FM waveform synthesis [4] and only return reliably good results
for impractically large arrays [5]. Examples of 1D heuristic design approaches can be found in [6–11].
Reference [12], which proposes separate beams on interlaced subarrays, represents a 2D heuristic method.
Nonlocal optimization methods (often referred to as “global” methods) such as simulated annealing and
genetic algorithms have also been used in 1D and 2D [13–18], although they generally do not guarantee a
global solution in a reasonable time and indeed can be impractically slow when applied directly to large
problems.

The drawbacks of heuristic and nonlocal methods suggest that local optimization should be a part of
practical large-scale approaches. Local optimization approaches are presented in [19–24] for 1D. The
reflectarray and conformal literature is particularly rich with 2D/3D approaches [25–29], many based on the
alternating-projection method of [30, 31]. Many of these approaches combine a core local minimization step
with heuristic or nonlocal methods in order to deal with globally suboptimal local minima. Further discussion
on this topic is deferred until 3.2. An approach that seems to be globally optimal is [32], but it is largely
restricted to custom sidelobe nulling rather than mainlobe shaping. (An extension is presented in [33], which
introduces mainlobe shaping but also local minima.)

Of the above approaches, local optimization combined with some non-local or heuristic methods to
avoid or discard “bad” local minima seems to be the preferred approach. To that end, this work presents a
pattern-error objective function that mirrors those used in complex-weight (non-phase-only) pattern design,
is flexible, can be efficiently computed along with its gradient, and is suitable for solution with modern tools

Manuscript approved January 14, 2016.
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2 D. P. Scholnik

that can handle designs with thousands of elements. Problems of this class often have local minima with
characteristic point-nulls in the mainbeam, which some simple heuristics are used to identify and avoid.

2. Weighted Pattern Error

2.1 Notation

Throughout the sequel, scalar-valued variables (x,φ) will be represented with a medium weight italic
font, while vector and matrix values will be represented in bold upright (x) or Greek (φ) characters. The nth
element of a vector x is represented either explicitly as [x]n or implicitly as xn .

2.2 Array Factor

We assume in the sequel that we have identical isotropic elements in a planar array, so that the array
pattern reduces to the 2D array factor

A(u) =

N−1∑
n=0

a(xn )e j 2π
λ uT xn , (1)

where a(xn ) is the complex array weight applied to the element at array-plane location xn . Here, u =
(
u
v

)
represents two-dimensional spatial frequency normalized so that the unit circle ‖u‖ ≤ 1 corresponds to
propagating radiation (so-called “visible” space). The array factor has the form of a discrete-space Fourier
transform but with an inverse-transform exponent to describe plane-wave propagation.

The identical-element assumption will not always apply, and it is straightforward to incorporate unique
element patterns into the array pattern. When it does apply, however, the benefits are substantial: the array
factor can be computed using FFT techniques. This enables efficient computation of key quantities used in
the optimization of the array pattern.

2.3 Pattern Error Objective

A very common approach to the design of FIR filters, phased array weights, and related structures is to
minimize some weighted error between the response being designed and some ideal desired response. When
coefficient amplitudes are not fixed, this often results in a convex optimization [34, 35]. A similar approach
can be used for phase-only responses, but will not be convex. Consider first the weighted Lp pattern error
metric

f (a) =

(∫
W pq (u)���

��A(u)��q − Dq (u)���
p

du
) 1

p

, p ≥ 1 (2)
q = {1,2}

where a is the vector of array weights with [a]n = a(xn ), W is a nonnegative weighting function, and D is
the desired magnitude pattern. The support of W determines the region of integration, and its value defines
how much each direction adds to the overall error. It can be zero for don’t-care regions. The parameters q
and p permit some additional control over the nature of the resulting approximation, with q choosing whether
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to approximate either the magnitude or power pattern1 and real-valued p controlling the relative importance
of large and small errors. In particular, larger p emphasizes peak approximation errors (thus providing more
of an equiripple error) while smaller p emphasizes the average errors. (The least-squares special case of
p = 2 is already widely used for phase-only synthesis, for example [26, 36, 39].) One key difference from
traditional convex weighted error metrics is that only the magnitude of A is considered; the phase response
will be determined by the optimization. In complex-weight design the absolute value is usually avoided by
imposing conjugate symmetry on the weights, but conjugate symmetry is precluded in all but the most trivial
many phase-only designs. (Details are in Appendix A.)

Although (2) is written in terms of the array factor only, it is straightforward to incorporate a common
nonisotropic element pattern Ael by defining W (u) = W ′(u) |Ael(u) | and D(u) = D ′(u) |Ael(u) |−1. Thus the
simplifying isotropic element assumption does not lead to any significant loss of generality.

2.4 Unconstrained vs. Constrained vs. Feasibility Formulations

The focus here is on unconstrained minimization of (2) for absolute efficiency. This is important for
phased-array applications as many thousands of different beams might need to be precomputed, or custom
beams may be required to be computed on the fly. Another advantage of unconstrained minimization is that it
(by definition) guarantees a feasible solution. A third advantage is that it guarantees (locally) Pareto-optimal
solutions; that is, no part of the pattern can be improved without degrading some other part. This ensures that
all available degrees of freedom are used. The primary drawback of using (2) for unconstrained formulation
is that it relies on the heuristic choice of a weighting function W in order to control the relative errors in
different parts of of the pattern. Thus without some trial-and-error or additional information one cannot
guarantee specific error bounds.

A common alternative is the family of projection-based feasibility methods based on [31] which have
no objective function as such but seek to directly meet a set of constraints. These methods have their
own drawbacks. First, the constraints may be infeasible. Alternately, the constraints may be too loose, in
which case the first feasible iterate found is returned even though additional improvement is possible. In
general feasibility methods do not produce Pareto-optimal solutions. These methods are often employed for
reflectarrays, where one or a small number of fixed beams are to be designed and computational speed is less
of a factor.

Finally, there exist several approaches to extend the unconstrained optimization presented here to full
constrained optimization [40]. This can be done by adapting the weighting function W to achieve the desired
levels, which is effectively a penalty method. The augmented Lagrangian method is a related alternative that
can improve conditioning by estimating the Lagrange multipliers (dual variables). The drawback of these
methods is primarily increased computational complexity.

2.5 Derivation of the Gradient

We now proceed to derive the gradient of the objective f , which we need for most optimization solvers.
The objective is a real-valued function of the complex vector a, which we decompose as magnitude/phase

1It has been claimed that q = 2 reduces the problem of undesirable local minima, based on results from related analysis
problems [36–38]. However, no significant difference in local-minima performance between q = 1 and q = 2 was observed here.
This may be attributable to the differences between the analysis and synthesis problems (including a lack of a phase-only constraint
in the former) or to the nature of the local minima most often encountered in this work.
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ρ ◦ e jφ where ◦ is the Hadamard (pointwise) product and exponentiation by a vector is taken pointwise. The
gradient with respect to both magnitude and phase can be written as the 2N × 1 vector

∇ f (ρ,φ) ,
(
∇ρ

∇φ

)
f (ρ,φ)

and straightforward application of the chain rule to (2) yields

∇ f = f 1−p
∫

W pq (u)���
��A(u)��q − Dq (u)���

p−1
sgn

(
|A(u) |q − Dq (u)

) q
2
|A(u) |q−2 ∇|A(u) |2 du. (3)

It remains to compute the gradient of |A(u) |2:

∇|A(u) |2 = ∇
(
Re{A(u)}2 + Im{A(u)}2

)
(4)

= 2 Re{A(u)} ∇Re{A(u)} + 2 Im{A(u)} ∇ Im{A(u)}.

Since A is a holomorphic (analytic) function, it obeys the polar form of the Cauchy-Riemann equations:

ρ ◦ ∇ρ Re{A(u)} = ∇φ Im{A(u)}

ρ ◦ ∇ρ Im{A(u)} = −∇φ Re{A(u)}.

Thus the gradient is completely defined by the real and imaginary parts of

∇ρ A(u) = e jφ ◦ e j 2π
λ XT u

where X is the matrix whose columns contain the in-plane element locations {x0, . . . ,xN−1}. Substituting back
into (4) and applying the identities Re{x y∗} ≡ Re{x}Re{y } + Im{x} Im{y } and Im{x y∗} ≡ Im{x}Re{y } −
Re{x} Im{y } we find

(
∇ρ

∇φ

)
|A(u) |2 = 2 *.

,

Re
{

A(u)e− jφ ◦ e− j
2π
λ XT u

}

Im
{

A(u)ρ ◦ e− jφ ◦ e− j
2π
λ XT u

}+/
-
.

If we now fix the weight magnitudes ρ we are left with the N × 1 gradient ∇φ |A(u) |2. Substituting back into
(3), we find the nth gradient component as

∂ f
∂φn

= Im
{∫

f 1−pW pq (u)���
��A(u)��q − Dq (u)���

p−1
× (5a)

sgn
(
|A(u) |q − Dq (u)

) qA(u)
|A(u) |2−q

e− j
2π
λ uT xn du ρne− jφn

}
= Im

{∫
B(u) e− j

2π
λ uT xn du ρne− jφn

}
(5b)
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where in (5b) we combine all the weighting factors into a single function B (which has the same support as
W ) and see that the integral has the form of a Fourier transform. Although this expression is a little messy, it
is straightforward to compute. In practice the integrals in the objective and gradient will be approximated
by a sum over lattice points. As shown in the next section, choosing the approximating lattice properly in
relation to the element lattice allows the forward and inverse transforms to be efficiently computed using an
FFT/IFFT pair.

A couple of concluding notes: Although the restriction ρ = 1 is most common, representing an array with
fixed uniform amplitude illumination, phase-only optimization can also find application to arrays with fixed
but nonuniform tapers. Such fixed tapers might be designed over the ensemble of desired beams, as in [41],
or imposed by a legacy system. Also, (2) can be somewhat trivially extended to a sum of weighted Lp norms
with different values of p. This would allow designs with different characteristics in different regions: an
equiripple mainbeam and a L2 sidelobe region, for example. This would still require only a single FFT/IFFT
pair to compute.

2.6 FFT Computation of Objective and Gradient

Because the objective and gradient will be repeatedly evaluated inside of an optimization routine, we
want to find an efficient way to compute them. The majority of the computation lies in the sum of (1) and the
integral (to be approximated with a sum) of (5b). The identical-element assumption ensures that these are
both Fourier transforms, and thus fast algorithms are available. If the element locations are restricted to a
lattice (which they are in most large linear and planar arrays), then the computation can be made using any of
a number of multidimensional FFT/IFFT algorithms [42]. For arbitrary element locations nonuniform FFT
algorithms exist [43–45] that have the same asymptotic complexity as the conventional FFT, although the
overhead and scale factor are greater. These find application for conformal [26] and otherwise irregular [46]
arrays, where a uniform lattice is not available.

We focus attention here on planar arrays with a uniform element lattice; the restriction to 1D or extension
to 3D is mathematically straightforward although shadowing effects will generally violate the ideal element
pattern assumption in 3D. The approach outlined below maps samples on an arbitrary lattice such that an
ordinary rectangular FFT can be used, since such routines tend to be widely available and are the mostly
highly optimized for computation. Similar approaches can be found in [42].

Let 2 × 2 matrix Λ with linearly independent columns be a lattice basis for the wavelength-normalized
in-plane array element positions, such that {xn , . . . ,xN−1} ⊂ λΛZ

2 where Z2 is the set of all integer 2-vectors.
This lets us re-enumerate the element positions in terms of index n ∈ Z2 as xn = λΛn. The columns of the
dual lattice basis Λ−T define two adjacent sides of a parallelogram that encloses one period of the array factor.
We wish to sample the array factor on a uniform grid within this period of sufficient density to approximate
the integral of (2). We do this by defining a superlattice of the dual lattice with basis Λ−TR−1, where
R = diag(R1,R2) is a diagonal integer resampling matrix. This then defines |R| = R1R2 spatial frequency
points within the period of the form uk = Λ−TR−1k, with k ranging over the set

K =
{
k = (k1, k2)T : k1 = 0, . . . ,R1 − 1; k2 = 0, . . . ,R2 − 1

}
.
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Evaluating (1) at these points and substituting for xn in terms of the lattice basis in the exponential yields

A(uk) =
∑
n∈Z2

a(xn)e j2πkT R−1n

=
∑
n∈K

a ′(xn)e j2πkT R−1n (6)

where

a ′(xn) =
∑

m∈Z2

a
(
x(n−Rm)

)
(7)

is the periodic “wrapping” of the array coefficient function a. For any practical R the sum of (7) will have at
most one nonzero term, and so the operation (sometimes also referred to as data turning) represents only
zero-padding and data rearrangement. The expression in (6) is, to within a scale factor, the standard separable
2D IDFT, which can be made more explicit by breaking it out as

A
(
u(k1,k2)

)
=

R1−1∑
n1=0

e j2π n1k1
R1

R2−1∑
n2=0

e j2π n2k2
R2 a ′(x(n1,n2)).

This, to within a possible normalizing scale factor of 1/|R|, is the form computed by most standard 2D IFFT
routines.

Having computed the array factor, we now approximate the integral of (2) as a Riemann sum over points
in the lattice Λ−TR−1Z2:

f (a) ≈
1

|Λ| |R|

∑
k∈Z2

W (uk)���
��A(uk)��q − Dq (uk)���

p

where the leading factor is the area of the cell occupied by each point uk. Although in the most-common case
W and D would have support over exactly one period of the array factor, it is not required. In cases of wide
element spacing, for example, the visible space ‖u‖ ≤ 1 is not contained within a single period of the array
factor. In such cases it may make sense to define the support of W and D over the full visible part of the array
factor.

Similarly approximating the integral of (5b) with a sum yields

∂ f (φ)
∂φn

≈ Im
{

1
|Λ| |R|

∑
k∈Z2

B(uk)e− j2πkT R−1nρne− jφn

}

=
1

|Λ| |R|
Im

{
ρne− jφn

( ∑
k∈K

B ′(uk)e− j2πkT R−1n
)}

(8)

where

B ′(uk) =
∑

m∈Z2

B
(
u(k−Rm)

)
(9)
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is the periodic wrapping of B. (In this case the sum of (9) may contain more than one nonzero term if W
is defined beyond one period.) The parenthesized expression in (8) is the standard form for the DFT. The
gradient can therefore be found by first computing A via IFFT per (6), then computing B, and then (8) via
FFT.

2.7 Computational Complexity

A straightforward (non-FFT) discretization of the gradient computation of (5) is essentially a matrix-
vector multiply, and would have complexity O(N M), where M is the number of points used to approximate
the integral. Using the FFT as outlined above has complexity O

(
|R| log2(|R|)

)
. For most cases of interest

the FFT approach will be considerably faster, the exceptions being cases of small N or M that will still be
quite fast regardless of the method. We can make the comparison more directly by noting that the number of
sample points |R| is generally chosen proportional to the number of elements N (multipliers of 100–400 are
typical), so that the asymptotic complexity can also be written simply as O

(
N log2(N )

)
.

3. Pattern Error Minimization

3.1 Local Solvers

A large number of solvers exist to find local minima of an objective function given its gradient. The
so-called quasi-Newton methods are often preferred, as they offer much better convergence properties than
simple steepest-descent algorithms but do not require the overhead of Hessian matrix computation or inversion
as do true Newton methods. Quasi-Newton methods instead update an estimate of the inverse-Hessian or
its equivalent based only on the objective and its gradient. The original approaches, such as the eponymous
BFGS method of Broyden, Fletcher, Goldfarb, and Shanno [47–50] still require storage of, and multiplication
by, a full N × N matrix, with a per-iteration complexity of O(N2). These algorithms have previously been
used for phase-only array synthesis [26, 36]. More recently limited-memory versions (L-BFGS) [51] have
been developed that store only a much smaller N × L matrix to represent the Hessian, with per-iteration
complexity of O(N L). The penalty vs. full BFGS is typically a small increase in the number of required
iterations to reach convergence.

Several quasi-Newton solvers with Matlab interfaces were tested on the example designs in the next
section. Several L-BFGS implementations are freely available [52–57]. Of these, [54, 57] also provide
conjugate-gradient methods, an alternative class of algorithms for gradient-based minimization with similar
computational complexity. The fminunc function of the commercial Matlab optimization toolbox provides
a full-memory BFGS implementation, although it was found to be substantially slower than the L-BFGS
solvers. All solvers showed similar convergence performance, with the L-BFGS implementations generally
requiring the least total time.

3.2 Initialization

As will be seen in the examples, the pattern-error objective has some (indeed many) local minima that are
globally suboptimal. A common feature of these is characterized by example in Sec. 4.3. Since the various
solvers find a local minima “close” to the starting point, choosing the initial element phases becomes key.
Even for simple designs, experimentation quickly shows that choosing completely random phases rarely
produces good solutions.
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3.2.1 Approaches Used in the Examples

Although solving the local minima problem is not the primary goal of this paper, several heuristic methods
were used to improve local minima quality. These include:

Symmetry

Imposing even symmetry on the initial phases can often improve local solutions, even if the ideal pattern
is not itself symmetric. Circular symmetry can also prove useful, reducing a 2D initialization choice to 1D.

Phase Continuity

Starting with completely random phases implies starting with a random array factor which bears no
resemblance to the desired pattern. Often a better choice is to sample a smooth phase function, such as a
low-order polynomial. A second-order bivariate polynomial will produce a linear-FM pattern of the form
considered in [5], with the polynomial coefficients controlling the starting beam position and beamwidth.
(See Section 4.1 for an example.) Higher-order polynomials provide a richer set of initial phases but are less
smooth.

Partial-Convergence Search

Often it is apparent that the current local solution is poor after relatively few iterations, well before full
convergence. One way to exploit this is to try many initializations, optimize for a fixed number of iterations
or until a trigger is activated (one such trigger is discussed in Section 4.3), and then fully optimize the best
partial result. These test optimizations can be further sped up by tweaking parameters in the solvers (for
example, the memory depth L in a L-BFGS algorithm) as well as reducing the number of sample points |R|
that are used to approximate the integrals in the objective and gradient.

3.2.2 Other approaches

Although not considered further here, more-elaborate approaches have been suggested to mitigate the
pattern-synthesis local minima problem, many coming from the reflectarray community. Some forego local
optimization altogether, choosing instead metaheuristic approaches such as simulated annealing, particle-
swarm optimization, and genetic algorithms [13–17]. The primary problem with these approaches is
speed; [17], for example, describes a single example that took 44 hours to compute on a single CPU core.
An approach in [16] that should be applicable to local minimization as well is to slowly walk the design
parameters out from a uniform-illumination starting point, re-optimizing at each step.

Local optimization approaches generally involve a series of modified optimizations. One such approach
is to first reduce the problem order by deriving the array weights from a polynomial basis with optimized
coefficients [24, 58], followed by full optimization. Others include adaptively changing the pattern-error
weighting [39], starting with a significant amplitude taper which is gradually reduced [28], or designing a
series of increasing-size arrays [29]. Both global and local approaches are used in [26], with the global search
applied to low-order polynomial models and the result used to seed the final full optimization.
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4. Examples

In this section a series of examples is presented, with progressive complexity. A common array geometry
is used for all examples. The array plane is inclined so that boresight points 15◦ above the horizon. The
basis matrix for the elements in the plane is Λ =

(
1/
√

3 1/(2
√

3)
0 1/2

)
, which defines a hexagonal lattice with an

interelement spacing of λ/
√

3. The array elements are centered on the 1075 points of the lattice that fall
within a radius of 10λ from the origin. The 1 dB and 3 dB beamwidths of the array with uniform (identical)
drive phases are about 1.7◦ and 3.0◦, respectively.

For all examples, the resampling matrix of section 2.6 was set to R = diag(512,512), which results in just
fewer than 244 spatial-frequency sample points per array element. Under Matlab on a dual-core Intel Core i7
laptop, the resulting objective computation took an average of 13 ms, while simultaneous computation of the
objective and the gradient took 25 ms. FFT and IFFT computation contributed just under half of the total
time.

4.1 Example 1: Circular Beam

For a first example, suppose we wish to form a broad flat-top circular boresight beam of radius 10◦, which
is approximately ru = 0.17 in units of normalized spatial frequency. The desired response D is thus constant
over the circle and zero elsewhere. By definition the total energy in the array weights is N , and applying
Parseval’s relation reveals that the energy in one period Π =

{
Λ−Tv : v ∈

(
[0,1) × [0,1)

)}
of the array factor

is ∫
Π

|A(u) |2 du = |Λ|−1N. (10)

If this energy were distributed evenly across the circular beam, the resulting array-factor height would be
D0 =

√
N

|Λ |πr2
u
. This is physically unrealizable, of course, as it implies zero sidelobes everywhere. Because

we know that some of the total energy must lie in the sidelobes, we will define the relaxed mainlobe level
D1 = αD0, where 0 ≤ α ≤ 1 is the relaxation parameter. (When α is given in dB units the operation
20 log10(α) is implied.) This relaxed level will then be used in the optimization objective.

In conventional complex array weight optimization we would choose the error weight function W to be
nonzero on both mainlobe and sidelobe regions, weighting each to get the desired balance between the errors.
Here, however, the choice of D1 and the implicit energy constraint (10) combine to effectively constrain the
sidelobe region, so that we can set W to unity within the mainlobe and zero elsewhere. We argue this for
two different cases. If we assume that the optimization successfully approximates the desired level D1 in the
mainlobe region, then the energy in the mainlobe is approximately πr2

uD2
1 = α2 |Λ|−1N . As a result of (10),

this means that the sidelobe energy is approximately (1 − α2) |Λ|−1N . So in this case we have implicitly set
the total sidelobe energy and allowed the optimization to allocate it so as to minimize mainlobe error. On the
other hand, if D1 is set too high for the optimization to approximate in the mainlobe, this implies that the
design has run up against the fundamental Fourier limitations of finite arrays. In this case the optimization
is essentially pushing upward on the mainlobe at optimality, and thus implicitly is simultaneously trying to
minimize sidelobe energy. We can augment the implicit energy constraint with explicit sidelobe weighting in
W , but will defer that to the second example.
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Because the desired pattern is circularly symmetric, the initial phases were chosen to be circularly
symmetric as well. A second-order polynomial in the element distance from array center was used, with the
polynomial coefficients chosen from a uniform distribution. Ten such polynomials were drawn and used to
generate ten prospective sets of starting phase values. Then, for each of the four combinations of p ∈ {2,40}
and α ∈ {0 dB,−1.5 dB} with D and W as described above and q = 1, the objective (2) was minimized for a
maximum of 20 iterations per initial phase set. The best result of the ten for each subdesign was then fully
optimized. The time to test all ten initializations using [52] was about 2 s per subdesign, while the time to
fully optimize the best candidate ranged from 0.1 s to 0.6 s. Convergence was typically achieve in less than
50 iterations.

A special case of the second-order polynomial used is a pure quadratic in the element distance. In [5] this
was shown to amount to 2D linear FM modulation, which in the limit of an infinite circular array approaches
an ideal flat-top circular beam. The single polynomial coefficient sets the beamwidth, and for practical array
sizes also affects the mainbeam ripple characteristic. For comparison to the Lp-optimized designs, this single
parameter was optimized to maximize the minimum gain within the mainlobe.

The resulting array factors are shown in Fig. 1a. They are scaled relative to the pattern of an isotropic
antenna radiating the same power; for unit-magnitude coefficients this is equal to A(u)/

√
N . Visually all

four Lp designs look very similar in Fig. 1a, which shows the patterns over all visible spatial frequencies,
with differences primarily in the mainlobe. The linear FM pattern, by comparison, has significantly more
ripple and wider transition bands. The mainlobe detail is shown in Fig. 1b, and here we can most clearly
see the effect of the values of p and α. When α = 1 (0 dB), we see that the optimized mainlobe falls well
below the target D0 level except at the center. When we relax the desired mainlobe by 1.5 dB, then we see
the optimized mainlobe ripple about the desired level as in classic digital filter designs. As we might expect,
the p = 2, α = 0 dB case provides the greatest rms value in the mainlobe, only 1.1 dB below the ideal D0
value, and thus concentrates the most energy in the mainlobe. However, it has a worse minimum value in the
mainlobe than either p = 40 case, which are essentially equiripple owing to the large p. In many broad-beam
applications it is this maximin pattern value, representing worst-case gain, that is most important. (Despite
being optimized specifically for this metric, the linear FM weighting is significantly worse than all of the
Lp designs on this score.) Adding −1.5 dB relaxation to the p = 40 case has minimal effect on either rms or
minimum mainlobe values and simply causes the energy from the large central ripple to be distributed to the
sidelobes. Further relaxing the mainbeam height does result in an increasingly flat mainlobe at the expense of
greater sidelobe energy.

4.2 Example 2: Circular Beam w/ Sidelobe Suppression

Building on the previous example, we now enforce a zone of increased sidelobe suppression from 2◦

below to 2◦ above the horizon. Such a zone could be useful to mitigate multipath, for example, or to reduce
interference with other systems. The extra suppression is achieved by setting D to zero in this region, and
setting W to a nonzero constant. Adjusting the relative value of W on the mainlobe and sidelobe regions
allows us to tradeoff the residual errors in the two regions. As before, the rest of the sidelobes are allowed to
be determined by the optimization. The initialization is handled as in the previous example, with parameters
p = 2 and α = −1.5 dB. Although the computational complexity of each iteration is identical to the previous
example, more iterations (100 was typical) are required for convergence, resulting in an average total solution
time of 3 s. In general, such closely spaced mainlobe and sidelobe specifications appear to produce error
surfaces that are not locally well approximated as a quadratic form and result in slower convergence.
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(a) Full visible space array factors. The lines on the top plot indicate constant azimuth and elevation at 15◦ intervals, with array
boresight at 15◦ elevation. The bottom row shows azimuth slices through the center of the mainlobe.
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slices through the center of the mainlobe. The green (upper) line segment indicates the theoretical ideal array-factor height D0, while
the red line indicates the relaxed height D1.

Fig. 1: Optimized array factors for the Example 1 designs.

The optimized array factor is shown in Fig 2, with azimuth and elevation cuts shown above and to the
right. The deep suppression around the horizon is clearly visible, with the peak and rms horizon sidelobe
levels indicated on the plot. The max, min, and rms values in the mainlobe are also shown on the plot, and
reveal that the “cost” of the extra sidelobe suppression is a loss of 0.2 dB of mainlobe energy and 0.7 dB
of worst-case gain. Visually, we can see that the sidelobes at elevations above the mainlobe have increased
relative to the previous design.

Figure 3 is a different view of the same optimized array factor, to illustrate the relationship with the
functions D and W . The parallelogram bounds one period of the array factor, over which W and D are
defined. The two sides meeting at the origin represent the columns of the dual lattice basis Λ−T =

( √
3 0
−1 2

)
.

Superimposed on the plot are (tiny) white dots at every nonzero sample of W .
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Fig. 2: Optimized array factor for the second example. The plots above and to the right are azimuth and
elevation slices through the beam center. The red line segments indicate the desired array factor level D1.

4.3 Local Minima Characterization

The complicated error surface for the objective (2) means that numerous (globally) suboptimal local
minima exist for most designs. Local solvers will find the “closest” (in some sense) minimum to the point
used to initialize the optimization. Thus the results can be very sensitive to a change in the initial phases. In
the examples presented so far, the combination of a smooth and circularly symmetric phase initialization
function and running 10 partial trials was almost always sufficient to produce a good local (and possibly
global) solution. With more-complicated desired geometries it can be hard to avoid “bad” local minima.

Here we define “bad” local minima specifically as those with point nulls within the mainbeam. Reference
[29] mentions, somewhat in passing, a local minima characteristic consisting of “holes” or point nulls in the
mainbeam of a pattern designed using a least-squares approach. The same nulls were seen both with and
without the phase-only constraint, and thus are due to optimizing only the magnitude (rather than complex)
pattern. Point-null artifacts have also been described as the Fourier-domain counterpart to the image-domain
“stripes” observed and characterized in phase-retrieval problems [59].

Consider Fig. 4a, which results from choosing the worst of the 10 initial phases rather than the best in
Example 2. Eight point nulls are clearly visible. (The indicated minimum mainbeam value is an artifact of the
grid used for plotting and computation; each point is a true null to working precision.) The mainlobe details
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Fig. 3: Illustration of the geometry of the D and W functions. The parallelogram bounds one period of
the array factor. Overlaid onto the period are (tiny) white dots for each nonzero sample of W , defining the
mainlobe and horizon regions.

in magnitude and phase are shown in Fig. 4b. In the immediate orbit of each null, the phase of the array
factor rotates a full 360 degrees [59]. Along any line drawn through a null location the phase is discontinuous
(at the null), and since the complex array factor (as a finite discrete-space Fourier transform) is continuous,
the magnitude must go to zero at that point.

As noted in [29, 59], the nulls are narrow enough that they do not greatly affect a squared-error objective.
One might expect here that increasing p would directly mitigate the point nulls, since they will then
increasingly dominate the objective. Experimentation has shown otherwise, with point nulls appearing for
any p. Similar nulls arise when using alternating-projection approaches [36, 59]. Thus point nulls appear to
be a common feature of magnitude/power pattern synthesis problems, and not specific to a given formulation.

There are (at least) three exploitable properties of such nulls: they tend to form early in the solver iteration,
they are stable once formed, and they are easy to detect while computing (2). This can be used to trigger an
early solver termination, in order to move on to another starting point. For example, the minimum value of
the ratio |A(u) |/D(u) over the mainbeam region after 20–60 iterations has proved to be a reliable indicator
of point nulls [60].
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Fig. 4: Array factor with point nulls for a representative “bad” local minimum of the Example 2 design.

4.4 Example 3: Sector Beam w/ Nonuniform Amplitude

Finally, we consider an example with a noncircular mainbeam which is not centered at boresight. The
mainbeam region is the sector between 0◦ and 30◦ in azimuth and between 5◦ and 60◦ in elevation. (A similar
design can be found in [27].) Rather than a flat desired pattern, we seek a pattern that provides uniform
radar detection sensitivity at the lesser of 100 km and the range at 40 km altitude. (The actual units are
irrelevant, only the ratio matters.) The result is a beam that is flat for low elevation angles and falls off (as
cosecant-squared in magnitude) for higher elevation angles as the altitude limit kicks in. As before we scale
down the desired response from the ideal to account for sidelobe energy, in this case by 1 dB. We retain
the horizon sidelobe suppression region from Example 2. Initialization is done similarly to the previous
examples, even though now the desired mainbeam is far from circularly symmetric. Two changes to increase
initialization diversity: the polynomial order of the phase initializing functions is increased to four, and 50
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starting points are tested at a time. Even with these extra initial values, multiple runs are sometimes required
to find a single null-free solution. Here initialization took about 9 s, and final solve took over 200 iterations
and about 1.8 s.

The array factor for one solution is shown in Fig. 5. The csc2 profile is clearly visible in the elevation
slice, and we achieve a deeper horizon depth than in Example 2 (at the expense of higher sidelobes) by
increasing the weight on that region of W .
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Fig. 5: Optimized array factor for the third example. The plots above and to the right are azimuth and
elevation slices through the beam center.

5. Conclusion

Phase-only array pattern optimization is both less common and harder to solve than conventional receive-
pattern synthesis. Modern tools have made general-purpose optimization far more accessible and efficient,
and are exploited here with an efficient yet reasonably flexible phase-only objective function that mirrors
common aproaches from the non-phase-only world. The examples demonstrate that it is now quite feasible to
quickly and directly optimize thousands of element phases to approximate arbitrary responses. The nonconvex
pattern-error objective has many local minima with catastrophic features such as nulls in the midst of the
mainlobe. For simpler designs fairly simple heuristics were demonstrated to avoid such bad local minima.
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These were found to be less effective for more complicated designs, and so more work is needed to produce a
fully unsupervised algorithm.
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Appendix A

IMPLICATIONS OF SYMMETRY FOR PHASE-ONLY ARRAY FACTORS

Symmetries are often imposed on filter and array coefficients, primarily for the purposes of reducing the
number of optimization variables without significantly impacting the achievable magnitude response. Several
common symmetries and their corresponding restrictions on the array factors are summarized below:

a(x) = ±a(−x) ←→ A(u) = ±A(−u)

Even/Odd symmetry Even/Odd symmetry
a(x) = ±a∗(−x) ←→ A(u) = ±A∗(u)

Conjugate symmetry/antisymmetry Real/Imaginary
a(x) = ±a∗(x) ←→ A(u) = ±A∗(−u)

Real/Imaginary Conjugate symmetry/antisymmetry

Other symmetries are possible in 2D, but these will suffice for the present discussion. Of these, some have
obvious drawbacks. A restriction to purely real or imaginary weights would be of limited use in the phase-only
case, since it would restrict the weights to ±1 or ± j, respectively. Odd symmetry implies A(0) = 0, and thus
precludes any mainbeam that included boresight.

Conjugate (linear-phase) symmetry initially appears very attractive because it reduces the number
of optimization variables by half with no immediately obvious restriction on the magnitude response.
Indeed, conjugate symmetry is widely used when array/filter weights are not magnitude constrained. As
shown in the following, however, conjugate symmetry combined with the phase only constraint imposes
a rather strict implicit constraint on the array factor mainlobe. We write the phase only constraint as
|a(x) |2 = a(x)a∗(x) = 1X (x), where 1X is the indicator function on the array support X. To simplify the
argument, we will assume that X lies on a lattice so that A is periodic. A Fourier convolution property then
allows us to write

(
A ∗ A†

)
(u) = A1(u) (A1)

where ∗ indicates (periodic) convolution, A†(u) , A∗(−u) is the paraconjugate operation, and A1 is the array
factor resulting from all unity weights. Now A is real and thus entirely positive or negative valued on any
null-free mainlobe region. Thus for a conventional array factor containing a single mainlobe surrounded by
significantly lower sidelobes, the left side of (A1) will be a boresight beam with a single mainlobe of roughly
twice the width of the mainlobe of A. However, we know that A1 has the narrowest mainlobe of all array
factors on the support X, in the sense that it maximizes |A(0) | for a fixed total weight energy ‖a‖2. Thus,
evidently imposing conjugate-symmetric symmetry on phase-only weights precludes synthesizing a mainlobe
significantly broader than that of A1. A similar argument holds for conjugate antisymmetry.

This would appear to leave even symmetry as the most viable symmetry out of those listed for phase-only
array factors, although its utility is limited by the corresponding restriction on the array factor.
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